如图,在Rt△ABC中,∠ACB=90º,AC=3cm,BC=4cm.动点P从点B出发,以每秒1cm的速度沿射线BA运动,求出点P运动所有的时间t,使得△PBC为等腰三角形.
解不等式,并把它的解集在数轴上表示出来.
两条抛物线与的顶点相同.
(1)求抛物线的解析式;
(2)点是抛物线在第四象限内图象上的一动点,过点作轴,为垂足,求的最大值;
(3)设抛物线的顶点为点,点的坐标为,问在的对称轴上是否存在点,使线段绕点顺时针旋转得到线段,且点恰好落在抛物线上?若存在,求出点的坐标;若不存在,请说明理由.
与相切于点,直线与相离,于点,且,与交于点,的延长线交直线于点.
(1)求证:;
(2)若的半径为3,求线段的长;
(3)若在上存在点,使是以为底边的等腰三角形,求的半径的取值范围.
某商店准备购进、两种商品,种商品毎件的进价比种商品每件的进价多20元,用3000元购进种商品和用1800元购进种商品的数量相同.商店将种商品每件的售价定为80元,种商品每件的售价定为45元.
(1)种商品每件的进价和种商品每件的进价各是多少元?
(2)商店计划用不超过1560元的资金购进、两种商品共40件,其中种商品的数量不低于种商品数量的一半,该商店有几种进货方案?
(3)端午节期间,商店开展优惠促销活动,决定对每件种商品售价优惠元,种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.
如图,一次函数的图象与反比例函数的图象交于第二、四象限内的点和点.过点作轴的垂线,垂足为点,的面积为4.
(1)分别求出和的值;
(2)结合图象直接写出的解集;
(3)在轴上取点,使取得最大值时,求出点的坐标.