(本小题满分12分)已知等比数列的前n项和为,且满足.(I)求p的值及数列的通项公式;(II)若数列满足,求数列的前n项和.
已知函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.
已知椭圆的中心在原点,焦点在轴上,一个顶点为,且其右焦点到直线的距离为3.(Ⅰ)求椭圆方程;(Ⅱ)设直线过定点,与椭圆交于两个不同的点,且满足.求直线的方程.
已知等比数列的所有项均为正数,首项=1,且成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)数列{}的前项和为,若=,求实数的值.
某市芙蓉社区为了解家庭月均用水量(单位:吨),从社区中随机抽查100户,获得每户2013年3月的用水量,并制作了频率分布表和频率分布直方图(如图).(Ⅰ)分别求出频率分布表中a、b的值,并估计社区内家庭月用水量不超过3吨的频率;(Ⅱ)设是月用水量为[0,2)的家庭代表.是月用水量为[2,4]的家庭代表.若从这五位代表中任选两人参加水价听证会,请列举出所有不同的选法,并求家庭代表至少有一人被选中的概率.
在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.