(本小题满分12分)为了参加市中学生运动会,某校从四支较强的班级篮球队A,B,C,D中选出12人组成校男子篮球队,队员来源如下表:(I)从这12名队员中随机选出两名,求两人来自同一个队的概率;(II)比赛结束后,学校要评选出3名优秀队员(每一个队员等可能被评为优秀队员),设其中来自A队的人数为,求随机变量的分布列和数学期望.
已知,,当为何值时,(1) 与垂直?(2) 与平行?平行时它们是同向还是反向?
已知圆和圆.(1)判断圆和圆的位置关系;(2)过圆的圆心作圆的切线,求切线的方程;(3)过圆的圆心作动直线交圆于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.
设数列的前项和,为等比数列,且.(1)求数列的通项公式;(2)设,求数列前项和.
如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面;(3)求直线BE与平面所成角的正弦值.
在△ABC中,角A,B,C所对边长分别为a,b,c,且c=3,C=60°(1)若a=,求角A;(2)若,求△ABC的面积.