在直角坐标系中,圆C的参数方程为(为参数)以O为极点,轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线的极坐标方程(1)求圆心的极坐标。(2)若圆C上点到直线的最大距离为3,求的值。
已知圆与直线相交于两点.⑴求弦的长;⑵若圆经过,且圆与圆的公共弦平行于直线,求圆的方程.
已知函数.(1)若关于的方程只有一个实数解,求实数的取值范围;(2)若当时,不等式恒成立,求实数的取值范围;(3)探究函数在区间上的最大值(直接写出结果,不需给出演算步骤).
已知两个不共线的向量满足,(1)若与垂直,求向量与的夹角;(2)当时,若存在两个不同的使得成立,求正数的取值范围.
已知函数(1)判断函数的单调性并用函数单调性定义加以证明;(2)若在上的值域是,求的值;(3)当,若在上的值域是 ,求实数的取值范围.
已知函数(其中)图象的相邻两条对称轴间的距离为,且图象上一个最高点的坐标为.(1)求的解析式;(2)将函数的图象向右平移个单位后,得到函数的图象,求函数的单调递减区间.