如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D.(1)如图1,连接BD并延长BD交AC于点E,连接AD.①证明:△CDE∽△CAD;②若AB=2,AC=.求CD和CE的长;(2)如图2,过点C作⊙O的另一条切线,切点为F,连结AF、BF,若OC=BF,求的值.
如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.
浠水县某中学规划在校园内一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草,(如图所示),若使每一块草坪的面积都为96平方米,则人行道的宽为多少米?
如图,在⊙O中,AB是直径, CD是弦,AB⊥CD。(1)P是优弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P在劣弧CD上(不与C、D重合)时,∠CPD与∠COB数量关系是什么?(直接写出答案)
△ABC在平面直角坐标系中的位置如图所示,A(-1,4),B(-2,2),C(0,1),将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.写出各点坐标。
已知关于x的方程x2-2(k-1) x +k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若,求k的值.