(本小题满分12分)已知椭圆C:(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程.(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.
已知函数,.(1)若曲线在点处的切线平行于轴,求的值;(2)当时,若对,恒成立,求实数的取值范围;(3)设,在(1)的条件下,证明当时,对任意两个不相等的正数、,有.
已知正项数列满足:,数列的前项和为,且满足,.(1)求数列和的通项公式;(2)设,数列的前项和为,求证:.
已知曲线的方程为:(,为常数).(1)判断曲线的形状;(2)设曲线分别与轴、轴交于点、(、不同于原点),试判断的面积是否为定值?并证明你的判断;(3)设直线与曲线交于不同的两点、,且,求曲线的方程.
如图,四棱锥的底面是正方形,侧棱底面,过作垂直交于点,作垂直交于点,平面交于点,且,.(1)试证明不论点在何位置,都有;(2)求的最小值; (3)设平面与平面的交线为,求证:.
图是某市月日至日的空气质量指数趋势图,空气质量指数()小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择月日至月日中的某一天到达该市,并停留天.(1)求此人到达当日空气质量优良的概率;(2)求此人停留期间至多有1天空气重度污染的概率.