已知函数,.(1)若曲线在点处的切线平行于轴,求的值;(2)当时,若对,恒成立,求实数的取值范围;(3)设,在(1)的条件下,证明当时,对任意两个不相等的正数、,有.
( 本小题满分12分) 设函数图像的一条对称轴是直线 (Ⅰ)求; (Ⅱ)求函数的单调区间及最值;
已知定义在上的函数的图象如右图所示 (Ⅰ)写出函数的周期; (Ⅱ) 确定函数的解析式.
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求的标准方程; (Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
已知函数. (Ⅰ)当时,求函数在,上的最大值、最小值; (Ⅱ)令,若在上单调递增,求实数的取值范围.
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从道备选题中一次性抽取道题独立作答,然后由乙回答剩余题,每人答对其中题就停止答题,即闯关成功.已知在道备选题中,甲能答对其中的道题,乙答对每道题的概率都是. (Ⅰ)求甲、乙至少有一人闯关成功的概率; (Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.