已知曲线的方程为:(,为常数).(1)判断曲线的形状;(2)设曲线分别与轴、轴交于点、(、不同于原点),试判断的面积是否为定值?并证明你的判断;(3)设直线与曲线交于不同的两点、,且,求曲线的方程.
(本题满分12分) 如图,平面⊥平面,其中为矩形,为梯形,∥,⊥,==2=2,为中点.(Ⅰ) 证明;(Ⅱ) 若二面角的平面角的余弦值为,求的长.
设,,且,(Ⅰ)求的值;(Ⅱ)设三内角所对边分别为且,求在上的值域.
已知半径为6的圆与轴相切,圆心在直线上且在第二象限,直线过点.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于两点且,求直线的方程.
已知函数.(1)求函数的最小正周期和单调递减区间;(2)若,求的值.
(本小题满分12分)已知函数f(x)=x3-ax2-3x.(1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.