(本小题满分10分)选修4-1:几何证明选讲如图,过点作圆的割线与切线,为切点,连接,,的平分线与,分别交于点,,其中.求证:;求的大小.
已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.
如图,在斜二测画法下,四边形A′B′C′D′是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是多少?
如图,设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 ,点 D 在椭圆上, D F 1 ⊥ F 1 F 2 , F 1 F 2 D F 1 = 2 2 , △ D F 1 F 2 的面积为 2 2 . (1)求该椭圆的标准方程; (2)是否存在圆心在 y 轴上的圆,使圆在 x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.
如图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且. (1)证明:平面; (2)若,求四棱锥的体积.
已知函数,其中,且曲线在点处的切线垂直于. (1)求的值; (2)求函数的单调区间与极值.