如图,在斜二测画法下,四边形A′B′C′D′是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是多少?
设向量,函数(其中).且的图像在y轴右侧的第一个最高点的横坐标是 (Ⅰ)求的值和单调增区间; (Ⅱ)如果在区间上的最小值为,求m的值
已知函数. (Ⅰ)若为定义域上的单调函数,求实数m的取值范围; (Ⅱ)当时,求函数的最大值; (Ⅲ)当,且时,证明:.
已知各项均不相等的等差数列的前四项和,且成等比. (Ⅰ)求数列的通项公式; (Ⅱ)设为数列的前n项和,若对一切恒成立,求实数的最小值.
在中,三内角A,B,C所对应的边分别是 a,b,c.若B=600,. (Ⅰ)求角C的大小; (Ⅱ)已知当时,函数的最大值为1,求的值.
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率; (Ⅱ)若抽取后不放回,设抽完红球所需的次数为,求的分布列及期望.