(本题满分12分)本题共2小题,第(1)小题6分,第(2)小题6分.如图所示,在长方体中,,,,为棱上一点.(1)若,求异面直线和所成角的正切值;(2)若,求证平面.
在三棱锥P-ABC中,D为AB的中点。 (1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下: (2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。
在平面直角坐标系中,角的终边经过点. (1)求的值; (2)若关于轴的对称点为,求的值.
(本小题满分14分)已知函数,其中,. (1)当,时,求函数的最小值; (2)当,且为常数时,若函数对任意的,总有成立,试用表示出的取值范围.
(本小题满分14分)已知椭圆()的离心率为,右焦点到直线的距离为. (1)求椭圆的标准方程; (2)过椭圆右焦点,斜率为()的直线与椭圆相交于、两点,为椭圆的右顶点, 直线,分别交直线于点,,线段的中点为,记直线的斜率为,求证:为定值.
【改编】(本小题满分14分)已知正项数列的前项和为,且,,成等比数列. (1)求的通项公式; (2)设,求的前项和; (3)在(2)的条件下,对任意,都成立,求整数的最大值.