(本小题12分)甲、乙两位学生参加数学竞赛培训,在活动期间,他们参加的5次测试成绩记录如下:甲 82 82 79 95 87 乙 95 75 80 90 85⑴用茎叶图表示这两组数据;⑵若要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由。
(本小题满分12分) 已知甲船正在大海上航行。当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:)。 (1) 试问乙船航行速度的大小; (2) 试问乙船航行的方向(试用方位角表示,譬如北偏东…度)。
(本小题满分12分) 已知各项均为正数的数列中,是数列的前项和,对任意,有 (1)求常数的值; (2)求数列的通项公式; (3)记,求数列的前项和。
(本小题满分12分) 在直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间。 (1)为使物体落在D内,求a的取值范围; (2)若物体运动时又经过点P(2,8.1),问它能否落在D内?并说明理由。
(本小题满分12分) 已知函数。 (1)若,求的最大值和最小值; (2)若,求的值。
(本小题满分13分) 设函数。 (1)求的单调区间; (2)若当时,(其中)不等式恒成立,求实数的取值范围; (3)试讨论关于的方程:在区间上的根的个数。