(本小题12分)一个盒子中装有张卡片,每张卡片上写有个数字,数字分别是、、、。现从盒子中随机抽取卡片,⑴若一次抽取张卡片,求张卡片上数字之和大于的概率;⑵若第一次抽张卡片,放回后再抽取张卡片,求两次抽取中至少一次抽到数字的概率。
已知定点,动点是圆(为圆心)上一点,线段的垂直平分线交于点. (I)求动点的轨迹方程; (II)是否存在过点的直线交点的轨迹于点,且满足(为原点).若存在,求直线的方程;若不存在,请说明理由.
已知数列中, 求通项公式 求前n项和
设数列,,,。。。。。,。。。。。(a,b为大于零的常数,且a) (1) 求证数列为等比数列。 (2)若数列又为等差数列,求b的值。
设直线与椭圆相交于两个不同的点. (1)求实数的取值范围; (2)当时,求
设命题“关于的x方程有两个实数根”,命题“关于x的不等式对恒成立”,若为假,为假,求实数的取值范围.