(本小题12分)一个盒子中装有张卡片,每张卡片上写有个数字,数字分别是、、、。现从盒子中随机抽取卡片,⑴若一次抽取张卡片,求张卡片上数字之和大于的概率;⑵若第一次抽张卡片,放回后再抽取张卡片,求两次抽取中至少一次抽到数字的概率。
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列. (1)求数列{an}的通项公式; (2)令bn=ln a3n+1,n=1,2,…,求数列{bn}的前n项和Tn.
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列. (1)求数列{an}的公比; (2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cos B-sin(A-B)sin B+cos(A+C)=-. (1)求cos A的值; (2)若a=4,b=5,求向量在方向上的投影.
在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsin A=3csin B,a=3,cos B= (1)求b的值; (2)求sin 的值.
在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列. (1)求cos B的值; (2)边a,b,c成等比数列,求sin Asin C的值.