.数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2;(Ⅲ) 正数数列中,.求数列中的最大项.
已知函数(1)当时,求使成立的的值;(2)当,求函数在上的最大值;(3)对于给定的正数,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.
设向量,,其中,,为实数.(1)若,且, 求的取值范围;(2)若,求的取值范围.
已知数列的前项和满足,(为常数,且).(1)求数列的通项公式;(2)设,且数列为等比数列.①求的值; ②若,求数列的前和.
如图所示,正方形所在的平面与等腰所在的平面互相垂直,其中顶,,为线段的中点.(1)若是线段上的中点,求证: 平面;(2)若是线段上的一个动点,设直线与平面所成角的大小为,求的最大值.
锐角的内角,,,的对边分别为,,,已知(1)求的值;(2)若,,求的面积.