已知椭圆的焦距为,其长轴长和短轴长之比为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设为椭圆的右焦点,T为直线上纵坐标不为的任意点,过作的垂线交椭圆于点, 若平分线段(其中为坐标原点),求的值;
(本题7分) 已知:,是第二象限角,求:(Ⅰ);(Ⅱ)的值.
(本小题满分15分)已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求,的标准方程;(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交于不同两点,,且满足?若存在,求出直线的方程;若不存在,说明理由.
如图,矩形所在的半平面和直角梯形所在的半平面成的二面角,∥,,,,,.(Ⅰ)求证:∥平面;(Ⅱ)求直线与平面所成角的正切值.
在平面直角坐标系中,已知抛物线:,在此抛物线上一点到焦点的距离是3.(1)求此抛物线的方程;(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.
(本题14分)如图,在三棱锥P—ABC中,E、F、G、H分别是AB、AC、PC、BC的中点,且PA=PB,AC=BC.(1)证明:AB⊥PC;(2)证明:PE//平面FGH。