(本小题满分14分)已知椭圆的离心率为,且经过点.圆.(1)求椭圆的方程;(2)若直线与椭圆C有且只有一个公共点,且与圆相交于两点,问是否成立?请说明理由.
数列{an}是等差数列,。(1)求通项公式an(2)若,求数列的前n项和Sn
(本小题满分10分)选修4-5:不等式选讲已知函数.(1)作出函数的图像;(2)解不等式.
(本小题满分10分)选修4—1:几何证明选讲如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM·MB=DF·DA.
已知函数().(1)当时,求函数在上的最大值和最小值;(2)当函数在单调时,求的取值范围;(3)求函数既有极大值又有极小值的充要条件。
已知集合A={a,b,c},其中a,b,c是三个连续的自然数。如果a,b,c能够作为一个三角形的三边长,且该三角形的最大角是最小角的2倍,求所有满足条件的集合A。