设是公比为正数的等比数列,,(Ⅰ)求的通项公式;(Ⅱ)设是首项为1,公差为2的等差数列,求数列的前项和
(12分)如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=loga(x+b)的部分图象. (1)分别求出函数f(x)和g(x)的解析式;(2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围.
(12分)集合A是由具备下列性质的函数f(x)组成的:①函数f(x)的定义域是[0,+∞);②函数f(x)的值域是[-2,4);③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:(1)判断函数f1(x)=-2(x≥0)及f2(x)=4-6·x(x≥0)是否属于集合A?并简要说明理由;(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.
(12分)已知命题p:方程a2x2+ax-2=0在[-1,1]上有且仅有一解.命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,求a的取值范围.
:已知函数(1) 当m=0时,求在区间上的取值范围;(2) 当时,,求的值。
已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表: (1)根据表格提供的数据求函数f(x)的一个解析式;(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为,当x∈[0,]时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围;