如图,正四棱锥S-ABCD的底面是边长为正方形,为底面对角线交点,侧棱长是底面边长的倍,P为侧棱SD上的点. (Ⅰ)求证:AC⊥SD(Ⅱ)若SD⊥平面PAC,为中点,求证:∥平面PAC;(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由。
已知函数,(1)求函数f (x)的最小值和最小正周期;(2)设△ABC的内角A、B、C的对应边分别为、b、c,且,若向量共线,求、b的值;
已知,,,.(1)若,求;(2)求的取值范围;
(本题满分12分,每小题6分)(1)若为基底向量,且若A、B、D三点共线,求实数k的值; (2)用“五点作图法”在已给坐标系中画出函数一个周期内的简图,并指出该函数图象是由函数的图象进行怎样的变换而得到的?
(本小题满分14分)设函数。 (1)若在处取得极值,求的值;(2)若在定义域内为增函数,求的取值范围;(3)设,当时,求证:① 在其定义域内恒成立;求证:② 。
(本小题满分13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值.