如图,正四棱锥S-ABCD的底面是边长为正方形,为底面对角线交点,侧棱长是底面边长的倍,P为侧棱SD上的点. (Ⅰ)求证:AC⊥SD(Ⅱ)若SD⊥平面PAC,为中点,求证:∥平面PAC;(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由。
在中,分别是角A、B、C的对边, ,且.(1)求角A的大小;(2)求的值域.
已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.
直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).(1)求曲线的离心率;(2)求在k=0,0<b<1的条件下,S的最大值;(3)当|AB|=2,S=1时,求直线AB的方程.
已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.
如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.