(本小题满分12分)已知函数R,是函数的一个零点.(1)求的值,并求函数的单调递增区间;(2)若,且,,求的值.
(本小题满分12分) 已知二次函数的图象经过原点,且。(1)求的表达式.(2)设,当时,有最大值14,试求的值.
(本小题满分12分)已知函数(1)写出函数的最小正周期和对称轴;(2)设,的最小值是,最大值是,求实数的值.
(本题满分12分)某民营企业生产A、B两种产品,根据市场调查和预测,A产品的利润y与投资额x成正比,其关系如图1所示;B产品的利润y与投资额x的算术平方根成正比,其关系如图2所示(利润与投资额的单位均为万元). (1)分别将A、B两种产品的利润表示为投资额的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?
(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.(1)函数在区间(0,2)上递减;函数在区间 上递增.当 时, .(2)证明:函数在区间(0,2)递减.(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
(本小题满分12分)如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为.(1)求的值; (2)求的值.