设函数.(1)若,且,求的值;(2)若,记函数在上的最大值为,最小值为,求时的的取值范围;(3)判断是否存在大于1的实数,使得对任意,都有满足等式:,且满足该等式的常数的取值唯一?若存在,求出所有符合条件的的值;若不存在,请说明理由.
在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求⑴ ∠ADB的大小;⑵ BD的长.
已知函数;(1)若函数在其定义域内为单调递增函数,求实数的取值范围。(2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。
已知函数,(1)求函数的定义域;(2)求函数在区间上的最小值;(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
已知函数定义域为R,且,对任意恒有,(1)求函数的表达式;(2)若方程=有三个实数解,求实数的取值范围;
为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生和不全被选中的概率.下面的临界值表供参考:
(参考公式:其中.)