已知椭圆()的离心率为,且右焦点到直线的距离为。(Ⅰ)求椭圆的方程;(Ⅱ)已知点,过原点且斜率为的直线与椭圆交于两点,求面积的最大值。
如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m,3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN:NE=16:9.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).(1)用x的代数式表示AM,并写出x的取值范围;(2)求S关于x的函数关系式.
我们已经学过了等差数列,你是否想到过有没有等和数列呢?(1)类比“等差数列”给出“等和数列”的定义;(2)探索等和数列{an}的奇数项与偶数项各有什么特点?并加以说明.
已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在y轴上.(1)求双曲线的离心率,并写出其渐近线方程;(2)求椭圆的标准方程.
已知函数f(x)=﹣x3+x2+3x+a.(1)求f(x)的单调区间;(2)若f(x)在区间[﹣3,3]上的最小值为,求a的值.
形状如图所示的三个游戏盘中(图(1)是正方形,M、N分别是所在边中点,图(2)是半径分别为2和4的两个同心圆,O为圆心,图(3)是正六边形,点P为其中心)各有一个玻璃小球,依次水平摇动三个游戏盘,当小球静止后,就完成了一局游戏.(Ⅰ)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?(Ⅱ)用随机变量ξ表示一局游戏后,小球停在阴影部分的事件个数与小球没有停在阴影部分的事件个数之差的绝对值,求随机变量ξ的分布列及数学期望.