已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在y轴上.(1)求双曲线的离心率,并写出其渐近线方程;(2)求椭圆的标准方程.
已知a, b都是正数,并且a¹b,求证:a5 + b5 > a2b3 + a3b2
一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是 2 5 ;从袋中任意摸出2个球,至少得到1个白球的概率是 7 9 . (Ⅰ)若袋中共有10个球, (i)求白球的个数; (ii)从袋中任意摸出3个球,记得到白球的个数为 ξ ,求随机变量 ξ 的数学期望 E ξ . (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于 7 10 。并指出袋中哪种颜色的球个数最少.
设 (1)证明A>; (2)
设求证:
关于x的不等式组的整数解的集合为{-2},求实质数k的取值范围.