如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.(1)当x为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ∽△CQB,若存在,求出此时AP的长;若不存在,请说理由;(3)当时,求的值.
如图,海中有一个小岛P,它的周围19海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东600方向上,航行12海里到达B点,这时测得小岛在北偏东450方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.(精确到O.1)
如图,⊙0是△ABC的外接圆,点D在OC的延长线上,OD与AB相交于E,cosA=,∠D=300.(1)证明:BD是⊙0的切线, (2)若OD⊥AB,AC=3,求⊙0的半径.
先化简,再求值: , .
如图,△ABC中各顶点的坐标分别是A(2,6)、B(6,4)、C(4,2). (1)在第一象限内,画出以点0为位似中心,位似比为 的位似图形△A1B1 C1(2)写出△A1B1 C1各点的坐标.
如图,D是AB上的一点,DF与AC相交于E,DE=EF,CF∥BA.求证:四边形ADCF是平行四边形.