在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)
(本小题共12分)已知函数 (1)求的最小正周期; (2)若,, 求的值
(本小题满分14分) 已知上是减函数,且. (Ⅰ)求的值,并求出和的取值范围; (Ⅱ)求证; (Ⅲ)求的取值范围,并写出当取最小值时的的解析式.
(本小题满分14分) 已知是等比数列,,;是等差数列,,. (Ⅰ) 求数列的前项和的公式; (Ⅱ) 求数列的通项公式;,其中,试比较与的大小,并证明你的结论.
(本小题满分14分) 已知圆方程为:. (Ⅰ)直线过点,且与圆交于、两点,若,求直线的方程; (Ⅱ)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
(本小题满分14分) 如图:四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动. (Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由; (Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF; (Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°