如图,直线y=x+1与y轴交于A点,与反比列函数y=(x>0)的图象交于点M,过M作MH⊥x,且tan∠AHO=.(1)求k的值;(2)设点N(1,a)是反比例函数y=(x>0)图像上的点,在y轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.
已知四边形 ABCD 是 ⊙ O 的内接四边形, AC 是 ⊙ O 的直径, DE ⊥ AB ,垂足为 E .
(1)延长 DE 交 ⊙ O 于点 F ,延长 DC , FB 交于点 P ,如图1.求证: PC = PB ;
(2)过点 B 作 BG ⊥ AD ,垂足为 G , BG 交 DE 于点 H ,且点 O 和点 A 都在 DE 的左侧,如图2.若 AB = 3 , DH = 1 , ∠ OHD = 80 ° ,求 ∠ BDE 的大小.
如图, ▱ ABCD 的对角线 AC , BD 相交于点 O , EF 过点 O 且与 AD , BC 分别相交于点 E , F .求证: OE = OF .
“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.
根据以上信息,解决下列问题:
(1)条形统计图中“汤包”的人数是 ,扇形统计图中“蟹黄包”部分的圆心角为 ° ;
(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?
“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点 D ”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点 B “的学生人数.
4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.