(本小题满分12分) 惠州市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练都从中任意取出2个球,用完后放回.(1)设第一次训练时取到的新球个数为,求的分布列和数学期望; (2)已知第一次训练时用过的球放回后都当作旧球,求第二次训练时恰好取到个新球的概率. 参考公式:互斥事件加法公式:(事件与事件互斥).独立事件乘法公式:(事件与事件相互独立).条件概率公式:.
已知椭圆经过点,对称轴为坐标轴,焦点,在轴上,离心率.(1)求椭圆的方程;(2)求的角平分线所在直线的方程;(3)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若存在,说明理由.
如图,在四棱锥中,底面为菱形,,为的中点.(1)若,求证:平面平面;(2)设点是线段上的一点,,且平面.(1)求实数的值;(2)若,且平面平面,求二面角的大小.
数列满足:,().(1)证明:数列是等比数列;(2)求数列的通项公式;(3)设,数列的前项和为,求证:.
在中,角,,的对边分别为,,,已知.(1)求;(2)若,求的取值范围.
已知函数(其中是自然对数的底数),,.(1)记函数,当时,求的单调区间;(2)若对于任意的,,,均有成立,求实数的取值范围.