(本小题满分12分) 惠州市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练都从中任意取出2个球,用完后放回.(1)设第一次训练时取到的新球个数为,求的分布列和数学期望; (2)已知第一次训练时用过的球放回后都当作旧球,求第二次训练时恰好取到个新球的概率. 参考公式:互斥事件加法公式:(事件与事件互斥).独立事件乘法公式:(事件与事件相互独立).条件概率公式:.
函数. (1)令,求的解析式; (2)若在上恒成立,求实数的取值范围; (3)证明:.
椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点. (1)求椭圆的方程及线段的长; (2)在与图像的公共区域内,是否存在一点,使得的弦与的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.
设数列的前n项的和与的关系是. (1)求数列的通项; (2)求数列的前项和.
向量.函数. (1)若,求函数的单调减区间; (2)将函数的图像向左平移个单位得到函数,如果函数在上至少存在2014个最值点,求的最小值.
观察下面一组组合数等式:;;; ………… (1)由以上规律,请写出第个等式并证明; (2)随机变量,求证:.