(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC,(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.
齐齐哈尔市教育局非常重视学生的身体健康状况,为此在体育考试中对部分学生的立定跳远成绩进行了调查(分数为整数,满分100分),根据测试成绩(最低分为53分)分别绘制了如下统计表和统计图.(如图)
(1)被抽查的学生为 人. (2)请补全频数分布直方图. (3)若全市参加考试的学生大约有4500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀) (4)若此次测试成绩的中位数为78分,请直接写出78.5~89.5分之间的人数最多有多少人?.
如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3) (1)求此二次函数的解析式; (2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.
如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1). (1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1 (2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)
先化简,再求值:,其中a、b满足式子.
如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E. (1)求点C的坐标. (2)连接AD,当AD平分∠CAB时,求直线AD的解析式. (3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.