(本小题满分12分)在三棱锥中,。 (1)求证:;(2)求二面角的余弦值的绝对值。
如图,△ABC的外接圆⊙O的半径为5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,.(1)求证:平面AEC⊥平面BCED;(2)试问线段DE上是否存在点M,使得直线AM与平面ACE所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.
某电视台拟举行由选手报名参加的比赛类型的娱乐节目,选手进入正赛前需通过海选,参加海选的选手可以参加A、B、C三个测试项目,只需通过一项测试即可停止测试,通过海选.若通过海选的人数超过预定正赛参赛人数,则优先考虑参加海选测试次数少的选手进入正赛.甲选手通过项目A、B、C测试的概率为分别为、、, 且通过各次测试的事件相互独立.(1)若甲选手先测试A项目,再测试B项目,后测试C项目,求他通过海选的概率;若改变测试顺序,对他通过海选的概率是否有影响?说明理由;(2)若甲选手按某种顺序参加海选测试,第一项能通过的概率为p1,第二项能通过的概率为p2,第三项能通过的概率为p3,设他通过海选时参加测试的次数为,求的分布列和期望(用p1、p2、p3表示);并说明甲选手按怎样的测试顺序更有利于他进入正赛.
设.(1)求的最小正周期;(2)若函数y=f(x)与的图象关于直线x=1对称,求当时y=g(x)的最大值.
(本小题满分14分)已知函数.(1)求函数的单调区间;(2)若函数的图像在点处的切线的倾斜角为,对于任意的,函数在区间上总不是单调函数,求的取值范围;(3)求证:.
(本小题满分13分)已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积为.(1)求椭圆C的方程;(2)设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线上.