如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.
如图,在直角坐标平面内,直线与轴和轴分别交于A、B两点,二次函数的图象经过点A、B,且顶点为C. (1)求这个二次函数的解析式; (2)求的值; (3)若P是这个二次函数图象上位于轴下方的一点,且ABP的面积为10,求点P的坐标.
如图,在正方形ABCD中,E是边CD上一点,交CB的延长线于点F,联结DF,分别交AE、AB于点G、P. (1)求证:AE=AF; (2)若∠BAF=∠BFD,求证:四边形APED是矩形.
某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段和分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数(张)和每个无人售票窗口售出的车票数(张)关于售票时间(小时)的函数图象. (1)求(张)与(小时)的函数解析式; (2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?
如图,已知在△ABC中,AB=AC,,,AD⊥BC于D,O是AD上一点,OD=3,以OB为半径的⊙O分别交AB、AC于E、F. 求:(1)⊙O的半径; (2)BE的长.
如图,已知在△ABC中,AB=AC,BC比AB大3,,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q. (1)求AG的长; (2)当∠APQ=90º时,直线PG与边BC相交于点M.求的值; (3)当点Q在边AC上时,设BP=,AQ=,求关于的函数解析式,并写出它的定义域.[