(本小题满分10分)选修4-1 :几何证明选讲如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC.(Ⅰ)求证:CE·EB = EF·EP;(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.
三角形ABC的三个顶点A(1,3)B(1,﹣3)C(3,3),求 (Ⅰ)BC边上中线AD所在直线的方程; (Ⅱ)三角形ABC的外接圆O1的方程; (Ⅲ)已知圆O2:,求圆心在x-y-4=0,且过圆O1与圆O2交点的圆的方程。
如图,棱锥的底面是矩形,⊥平面,. (1)求证:BD⊥平面PAC; (2)求二面角P—CD—B的大小; (3)求点C到平面PBD的距离.
如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知,,,. (1)设点是的中点,证明:平面; (2)求与平面所成的角的正弦值;
已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣9≤0},m∈R. (1)若m=3,求A∩B; (2)若A⊆B,求实数m的取值范围.
已知函数(其中),函数在点处的切线过点. (Ⅰ)求函数的单调区间; (Ⅱ)若函数与函数的图像在有且只有一个交点,求实数的取值范围.