(本小题满分10分)选修4-1 :几何证明选讲如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC.(Ⅰ)求证:CE·EB = EF·EP;(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.
设函数,(Ⅰ)求的单调区间; (Ⅱ)若方程在上有两个实数解,求实数t的取值范围; (Ⅲ)是否存在实数,使曲线与曲线及直线所围图形的面积为,若存在,求出一个的值,若不存在说明理由.
一艘轮船在航行过程中的燃料费与它的速度的立方成正比例关系,其他与速度无关的费用每小时96元,已知在速度为每小时10公里时,每小时的燃料费是6元,要使行驶1公里所需的费用总和最小,这艘轮船的速度应确定为每小时多少公里?
设,(1)若在处有极值,求a; (2)若在上为增函数,求a的取值范围.
计算由曲线,直线x+y=3以及两坐标轴所围成的图形的面积S.
已知函数,设曲线在点处的切线为,若与圆相切,求的值.