(本题13分)若抛物线:的准线为,椭圆:的一个焦点与抛物线的焦点重合,且以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的离心率;(2)若为坐标原点,过点(2,0)的直线与椭圆相交于不同两点A、B,且椭圆上一点满足,求实数的取值范围.
已知椭圆:的一个焦点为且过点. (Ⅰ)求椭圆E的方程; (Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T. 证明:线段OT的长为定值,并求出该定值.
已知函数. (Ⅰ)当时,求证:函数在上单调递增; (Ⅱ)若函数有三个零点,求的值.
已知数列是等差数列,且满足:,;数列满足. (1)求和; (2)记数列,若的前项和为,求证.
如图,底面△为正三角形的直三棱柱中,,,是的中点,点在平面内,. (Ⅰ)求证:; (Ⅱ)求证:∥平面; (Ⅲ)求二面角的大小.
在中,分别为内角的对边,且. (Ⅰ)求角的大小; (Ⅱ)若,,求边的长.