定义函数,其中,,.(Ⅰ)设函数,求的定义域;(Ⅱ)设函数的图像为曲线,若存在实数使得曲线在处有斜率为的切线,求实数的取值范围;(Ⅲ)当且时,试比较与的大小(只写出结论).
已知函数,常数(1)讨论函数的奇偶性,并说明理由;(2)若函数在上为增函数,求的取值范围.
数列满足,其中求值,猜想,并用数学归纳法加以证明。
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。(1)求直线AC与PB所成角的余弦值;(2)求面AMC与面PMC所成锐二面角的大小的余弦值。
(本小题满分14分) 如图,直角梯形ABCD中,∠,AD∥BC,AB=2,AD=,BC=,椭圆F以A、B为焦点且过点D. (Ⅰ)建立适当的直角坐标系,求椭圆的方程;(Ⅱ)若点E满足,是否存在斜率两点,且,若存在,求K的取值范围;若不存在,说明理由。
(本小题满分12分) 如图正三棱柱各条棱长均为1,D是侧棱中点。(I)求证:平面(II)求平面(Ⅲ)求点