数列满足,其中求值,猜想,并用数学归纳法加以证明。
(本题满分16分)设函数.(1)若=1时,函数取最小值,求实数的值;(2)若函数在定义域上是单调函数,求实数的取值范围;(3)若,证明对任意正整数,不等式都成立.
(本小题满分16分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.(1)求a,b的值.(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.(ⅰ)若k=1,求△OAB面积的最大值;(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.
(本小题满分14分)如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)(1) 求摄影者到立柱的水平距离和立柱的高度;(2) 立柱的顶端有一长2米的彩杆绕中点在与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
(本小题满分14分)在正三棱柱中,点是的中点,.(1)求证:∥平面;(2)试在棱上找一点,使.
(本小题满分14分)设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.(1)求角A的大小;(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.