(本题满分16分)设函数.(1)若=1时,函数取最小值,求实数的值;(2)若函数在定义域上是单调函数,求实数的取值范围;(3)若,证明对任意正整数,不等式都成立.
如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A,过点A作轴的垂线交椭圆于另一点C,连结. (1)若点C的坐标为,且,求椭圆的方程; (2)若求椭圆离心率e的值.
如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近的一点,为圆周上靠近的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为. (1)求关于的函数解析式,并指出该函数的定义域; (2)求观光路线总长的最大值.
如图,在四棱锥中,底面是菱形,且. (1)求证:; (2)若平面与平面的交线为,求证:.
已知的内角的对边分别为,. (1)若,,求的值; (2)若,求的值.
已知函数在时取得极小值. (1)求实数的值; (2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;若不存在,说明理由.