(本小题满分16分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.(1)求a,b的值.(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.(ⅰ)若k=1,求△OAB面积的最大值;(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.
已知等差数列{an}的前5项和为105,且a10=2a5. (1)求数列{an}的通项公式; (2)对任意m∈N*,将数列{an}中不大于72m的项的个数记为bm,求数列{bm}的前m项和Sm.
(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值; (2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.
设{an}是公比为正数的等比数列,a1=2,a3=a2+4, (1)求{an}的通项公式; (2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3. (1)求an; (2)求数列{nan}的前n项和Tn.
已知函数f(x)=ax--3ln x,其中a为常数. (1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值; (2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围; (3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.