(本小题满分14分)如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)(1) 求摄影者到立柱的水平距离和立柱的高度;(2) 立柱的顶端有一长2米的彩杆绕中点在与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
已知圆和点(1)若过点有且只有一条直线与圆相切,求正实数的值,并求出切线方程;(2)若,过点的圆的两条弦互相垂直,设分别为圆心到弦的距离. (Ⅰ)求的值; (Ⅱ)求两弦长之积的最大值.
已知是正方形,⊥面,且,是侧棱的中点. (1)求证∥平面; (2)求证平面平面; (3)求直线与底面所成的角的正切值.
如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告之在甲船的南偏西30°,相距10海里C处的乙船. (1)求处于C处的乙船和遇险渔船间的距离; (2)设乙船沿直线CB方向前往B处救援,求∠ACB的正弦值.
已知两条直线,相交于点. (1)求交点的坐标; (2)求过点且与直线垂直的直线的方程.
等差数列的前项和为,已知. (1)求通项公式; (2)若求.