(本小题满分8分).已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上的高为AD。(1)求证: AB⊥AC; (2)求点D坐标。
某单位从一所学校招收某类特殊人才.对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
例如表中运动协调能力良好且逻辑思维能力一般的学生是人.由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为. (1)求,的值; (2)从运动协调能力为优秀的学生中任意抽取位,求其中至少有一位逻辑思维能力优秀的学生的概率.
已知函数. (1)求的值及函数的单调递增区间; (2)求函数在区间上的最大值和最小值.
从中这个数中取(,)个数组成递增等差数列,所有可能的递增等差数列的个数记为. (1)当时,写出所有可能的递增等差数列及的值; (2)求; (3)求证:.
已知椭圆经过点,离心率为. (1)求椭圆的方程; (2)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点,试问以线段为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.
已知函数,. (1)求函数的单调区间; (2)若函数在区间的最小值为,求的值.