(本小题满分14分)设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.(1)求角A的大小;(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
已知焦点在x轴的椭圆的中心为坐标原点O,椭圆短半轴长为1,动点在直线(为长半轴,为半焦距)上. (1)求椭圆的标准方程; (2)求以OM为直径且被直线截得的弦长为2的圆的方程; (3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值
如图,已知四棱锥底面为菱形,平面,、分别是、的中点. (1)证明: (2)设AB=2, 若为线段上的动点,与平面所成的最大角的正切值为求二面角的余弦值.
在棱长为1的正方体中,分别是棱的中点. (1)证明:平面; (2)求三棱锥的体积.
设计一个程序框图求的值,并写出程序。
已知圆C:与 直线:, (1)证明:对,与圆C恒交于两点; (2)求直线被圆C截得的线段最短长度,并求此时的值。