己知函数,其中 (1)求函数的单调区间;(2)若直线x-y-l=0是曲线y=的切线,求实数的值;(3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)
已知:对于任意的多项式与任意复数z,整除。利用上述定理解决下列问题: 在复数范围内分解因式:; 求所有满足整除的正整数n构成的集合A。
如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。 (1)求证:直线AB1∥平面C1DB; (2)求异面直线AB1与BC1所成角的余弦值
如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。 (1)求证:OB⊥AC; (2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。
设函数(其中). (1)当时,求函数的单调区间; (2)当时,求函数在上的最大值.
已知圆C的方程为,过点M(2,4)作圆C的两条切线,切点分别为A,B, 直线AB恰好经过椭圆T:(a>b>0)的右顶点和上顶点. (1)求椭圆T的方程; (2)已知直线l:y=kx+(k>0)与椭圆T相交于P,Q两点,O为坐标原点,求△OPQ面积的最大值.