(本小题8分)根据下列条件写出直线的方程,并且化成—般式(1)经过点 且倾斜角 ;(2)经过点A(-1,0)和B(2,-3).
(本小题满分12分)已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点).(1)数列的通项公式;(2)若,记,求证:.
(本小题满分12分)如图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:(1)求二面角B-AC-D的大小;(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。
..(本小题满分12分)已知:,,函数.(1)化简的解析式,并求函数的单调递减区间;(2)在△ABC中,分别是角A,B,C的对边,已知,△ABC的面积为,求的值.
(本小题满分12分)已知函数在点x=1处的切线与直线垂直,且f(-1)=0,求函数f(x)在区间[0,3]上的最小值。
本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分已知曲线的方程为,、为曲线上的两点,为坐标原点,且有.(1)若所在直线的方程为,求的值;(2)若点为曲线上任意一点,求证:为定值;(3)在(2)的基础上,用类比或推广的方法对新的圆锥曲线写出一个命题,并对该命题加以证明.