(本小题满分12分)某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若最初时含杂质2%,每过滤一次可使杂质含量减少,问至少应过滤几次才能使产品达到市场要求?(已知,)
是双曲线 上一点,、分别是双曲线的左、右顶点,直线,的斜率之积为.(1)求双曲线的离心率;(2)过双曲线的右焦点且斜率为1的直线交双曲线于,两点,为坐标原点,为双曲线上一点,满足,求的值.
设各项均为正数的等比数列中,,.设.(1)求数列的通项公式; (2)若,,求证:;
在中,的对边分别为,且. (1)求的值;(2)若,,求和.
已知:在函数的图象上,以为切点的切线的倾斜角为.(Ⅰ)求,的值;(Ⅱ)是否存在最小的正整数,使得不等式对于恒成立?如果存在,请求出最小的正整数;如果不存在,请说明理由;(Ⅲ)求证:(,).
对任意都有(Ⅰ)求和的值.(Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明;(Ⅲ)令试比较与的大小.