(本小题满分16分) 如图,设椭圆的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P.(1)求点P的坐标;(2) 若点P在直线上,求椭圆的离心率;(3) 在(2)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程.
(本小题满分10分)【选修4-5:不等式选讲】 在中,内角A、B、C所对的边的长分别为a、b、c,证明: (Ⅰ); (Ⅱ).
(本小题满分10分)【选修4-4:坐标系与参数方程】 在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求C的极坐标方程; (Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
(本小题满分10分)【选修4-1:几何证明选讲】 如图,为直角三角形,,以AB为直径的圆交AC于点E,点D是BC边的中点,连接OD交圆O于点M,求证: (Ⅰ)O、B、D、E四点共圆; (Ⅱ).
(本小题满分12分)设函数,P为常数(),. (Ⅰ)若对任意的,恒有,求P的取值范围; (Ⅱ)对任意的,函数恒成立,求实数a的取值范围.
(本小题满分12分)已知椭圆的离心率为,且抛物线的焦点恰好是椭圆C的一个焦点. (Ⅰ)求椭圆C的方程; (Ⅱ)过点作直线与椭圆C交于A,B两点,点N满足(O为原点),求四边形OANB面积的最大值,并求此时直线的方程.