已知椭圆C的中心为坐标原点,长轴长为4,一条准线方程为(1)求椭圆C的标准方程;(2)求椭圆C被直线y=x+1截得的弦长;(3)已知点A为椭圆的左顶点,过点A作斜率为的两条直线与椭圆分别交于点P,Q,若,证明:直线PQ过定点,并求出定点的坐标.
(本小题满分10分)甲、乙、丙三位同学商量高考后外出旅游,甲提议去古都西安,乙提议去海上花园厦门,丙表示随意.最终,三人商定以抛硬币的方式决定结果.规则是:由丙抛掷硬币若干次,若正面朝上,则甲得一分、乙得零分;若反面朝上,则乙得一分、甲得零分,先得4分者获胜.三人均执行胜者的提议.若记所需抛掷硬币的次数为X.(1)求的概率;(2)求X的分布列和数学期望.
(选修4-5:不等式选讲)已知实数a,b,c,d满足,,求a的取值范围.
(选修4-4:坐标系与参数方程)在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线(为参数)和曲线相交于两点,求中点的直角坐标.
(选修4-2:矩阵与变换)已知矩阵,其中均为实数,若点在矩阵的变换作用下得到点,求矩阵的特征值.
(选修4-1:几何证明选讲)如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB的延长线于点C.若AB =" 2" BC ,求证:.