(选修4-2:矩阵与变换)已知矩阵,其中均为实数,若点在矩阵的变换作用下得到点,求矩阵的特征值.
设a, b, c且a+b+c=1,求证:
已知:, 求mx+ny的最大值.
如图,已知内接于圆,是圆的直径,四边形为平行四边形,平面,,。⑴证明: DE⊥平面ADC;⑵记求三棱锥的体积;⑶当取得最大值时,求证:。
如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值;(III)求点E到平面ACD的距离。
如图,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点.(1)求证:MN//平面PAD(2)求证:MN⊥CD(3)若∠PDA=45°,求证:MN⊥平面PCD.