已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于.(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;(2)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合), 试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
已知直线为曲线在点处的切线,直线为该曲线的另一条切线,且的斜率为1.(Ⅰ)求直线、的方程;(Ⅱ)求由直线、和轴所围成的三角形的面积.
已知抛物线:的焦点为,直线过点且其倾斜角为,设直线与曲线相交于、两点,求以线段为直径的圆的标准方程.
袋中有2个红球,3个白球,摸出一个红球得5分,摸出一个白球得3分,现从中任意摸出2个球,求事件“所得分数不小于8分”的概率.
用解析法证明:
已知直线与的方程分别为,,直线平行于,直线与,的距离分别为,,且,求直线的方程.