(选修4-4:坐标系与参数方程)在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线(为参数)和曲线相交于两点,求中点的直角坐标.
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (I)求投到该杂志的1篇稿件被录用的概率; (II)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.
已知 △ A B C 的内角 A , B 及其对边 a , b 满足 a + b = a c o t A + b c o t B ,求内角 C .
记等差数列 a n 的前 n 的和为 S n ,设 S 3 = 12 ,且 2 a 1 , a 2 , a 3 + 1 成等比数列,求 S n .
已知数列 a n 中, a 1 = 1 , a n + 1 = c - 1 a n . (Ⅰ)设 c = 5 2 , b n = 1 a n - 2 ,求数列 b n 的通项公式; (Ⅱ)求使不等式 a n < a n - 1 < 3 成立的 c 的取值范围.
已知抛物线 C : y 2 = 4 x 的焦点为 F ,过点 K - 1 , 0 的直线 l 与相交于 A 、 B 两点,点 A 关于 x 轴的对称点为D . (Ⅰ)证明:点 F 在直线 B D 上; (Ⅱ)设 F A ⇀ · F B ⇀ = 8 9 ,求 △ B D K 的内切圆 M 的方程 .