20. 集合A是由具备下列性质的函数组成的:(1)函数的定义域是;(2)函数的值域是;(3)函数在上是增函数.试分别探究下列两小题:(Ⅰ)判断函数,及是否属于集合A?并证明.(Ⅱ)对于(Ⅰ)中你认为属于集合A的函数,不等式是否对于任意的总成立?若不成立,为什么?若成立,请证明你的结论.
设数列满足. (1)求; (2)由(1)猜想的一个通项公式,并用数学归纳法证明你的结论;(本题满分13分)
设函数,已知曲线在点处的切线方程是. (1)求的值;并求出函数的单调区间; (2)求函数在区间上的最值.
对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题: ①任意三次函数都关于点对称: ②存在三次函数,若有实数解,则点为函数的对称中心; ③存在三次函数有两个及两个以上的对称中心; ④若函数,则: 其中所有正确结论的序号是().
已知向量=(sin(+x),cosx),="(sinx,cosx)," f(x)= ·. (1)求f(x)的最小正周期和单调增区间; (2)如果三角形ABC中,满足f(A)=,求角A的值.
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD. (1)若G为AD边的中点,求证:BG⊥平面PAD; (2)求证:AD⊥PB; (3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.