如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.(1)求异面直线PC与BD所成的角; (2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置;若不存在,说明理由.
旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条. (1)求3个旅游团选择3条不同的线路的概率 (2)求选择甲线路旅游团数的期望.
设命题:函数在区间内不单调;命题:当时,不等式恒成立.如果命题为真命题,为假命题,求的取值范围.
(本小题满分12分)已知各项均为正数的数列的前项和满足 (1)求的值;(2)求的通项公式; (3)是否存在正数使下列不等式: 对一切成立?若存在,求出M的取值范围;若不存在,请说明理由
(本小题满分12分)如图,在三棱柱中,面,,,分别为,的中点. (1)求证:∥平面;(2)求证:平面; (3)直线与平面所成的角的正弦值.
(本小题满分8分)已知点、的坐标分别为、,动点满足. (1)求点的轨迹的方程; (2)过点作直线与轨迹相切,求切点的坐标.