如图,要在一块半径为1m,圆心为60°的扇形纸板AOB上剪出一个平行四边形MNPQ,使点P在AB弧上,点Q在OA上,点M、N在OB上,设∠BOP=θ.平行四边形MNPQ的面积为S.(1)求S关于θ的函数关系式;(2)求S的最大值及相应θ的值.
设等差数列的前项和为,且,,(1)求等差数列的通项公式.(2)令,数列的前项和为.证明:对任意,都有.
已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于两点, (1)当与垂直时,求出点的坐标,并证明:过圆心;(2)当时,求直线的方程;
已知函数 .(1)求函数的单调增区间; (2)在中,内角所对边分别为,,若对任意的不等式恒成立,求面积的最大值.
(本小题满分13分)已知直线,相交于点.(1)求点的坐标;(2)求以点为圆心,且与直线相切的圆的方程;(3)若直线与(2)中的圆交于、两点,求面积的最大值及实数的值.
(本小题满分13分)如图,在棱长均为的直三棱柱中,是的中点.(1)求证:平面;(2)求直线与面所成角的正弦值.