(本小题满分8分)某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,为方案一的函数图像,为方案二的函数图像.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):(1)求的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)小丽应选择哪种销售方案,才能使月工资更多?
(用配方法).
如图,△ABC各顶点的坐标分别为A(4、4),B(-2,2),C(3,0), (1)画出它的以原点O为对称中心的△AˊBˊCˊ; (2)写出 Aˊ,Bˊ,Cˊ三点的坐标.
在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义: 若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形. (1)如图1,已知A(-2,0),B(4,3),C(0,). ①若,则点A,B,C的最佳外延矩形的面积为; ②若点A,B,C的最佳外延矩形的面积为24,则的值为; (2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围; (3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.
在正方形ABCD中,点E,F,G分别是边AD,AB,BC的中点,点H是直线BC上一点.将线段FH绕点F逆时针旋转90º,得到线段FK,连接EK. (1)如图1,求证:EF=FG,且EF⊥FG; (2)如图2,若点H在线段BC的延长线上,猜想线段BH,EF,EK之间满足的数量关系,并证明你的结论. (3)若点H在线段BC的反向延长线上,请在图3中补全图形并直接写出线段BH,EF,EK之间满足的数量关系.
已知关于的方程. (1)求证:当时,方程总有两个不相等的实数根; (2)若二次函数的图象与x轴交于A,B两点(A在B的左侧),与轴交于点C,且tan∠OAC=4,求该二次函数的解析式; (3)已知点P(m,0)是x轴上的一个动点,过点P作垂直于x轴的直线交(2)中的二次函数图象于点M,交一次函数的图象于点N.若只有当时,点M位于点N的下方,求一次函数的解析式.